

Histidine hydrogen-deuterium exchange (His-HDX) mass spectrometry for identifying protein-ligand interactions

Kouhei Tanaka¹; Tarou Kishimoto¹; Shinko Watanabe¹; Kaori Mitsui¹; Chieko Okumura¹; Kouta Murasaki¹; Masaru Miyagi²; Ayako Kurimoto³; Ilker Sen³ 1. Mitsubishi tanabe pharma corporation; 2. Case Western Reserve University, OH; 3. Protein Metrics, Cupertino, CA Contact: akiurimoto@proteinmetrics.com

Introduction

Histidine Hydrogen-Deuterium Exchange Mass Spectrometry (His-HDX-MS) determines the HDX rates at the imidazole C2-hydrogen of histidine residues as it's HDX rate is significantly slower than the others. This property allows the HDX rate to evaluate the state of each histidine residue. (e.g. Histidine folded in protein: not deuterium substituted. Histidine exposed to heavy water: deuterium substituted)

Mechanism of the HDX reaction at the imidazole C2 hydrogen of histidine.

It is known that binding of a ligand stabilizes proteins against chemical or heat-induced denaturation. Based on this principle, several mass spectrometry-based proteomic approaches for identifying protein-ligand interactions have been developed, such as SPROX (stability of proteins from rates of oxidation) and TPP (thermal proteome profiling). Although these methods have shown encouraging results, identifying low abundant and multi-domain proteins is still challenging. We foresee that histidine hydrogen-deuterium exchange mass spectrometry (His-HDX-MS), which measures the slow HDX of histidine imidazole groups in proteins using mass spectrometry, has the potential to overcome these and evaluated the applicability of this platform to identify protein-ligand interadrawbacks. Here, we used His-HDX-MS as a platform to measure heat-induced unfolding of proteins and evaluate its applicability to the identification of protein-ligand interactions.

Methods – Experimental

Samples preparation

Results : Isotope distribution of thermally denatured peptide of MAPK 14

Fig. 1 Thermal denaturation of MAPK14 peptides containing a histidine residue changes their isotopic distribution in D₂O **MAPK14: HENVIGLLDVFTPAR**, *m*/*z* 560.9738, *z* = 3 (Orbitrap XL, Resolution 30000)

The degree of deuterium incorporation into His-containing peptides can be calculated based on the shift of the center of m/z. Fig. 2 Correlation coefficient between theoretical isotope distribution and D-substitution Control

Number of D- substitutions	0.02868	0.10605	0.32546	0.63205	0.92236	1.27731	1.51282	1.66527
Correlation coefficient	0.99999	0.99998	0.99927	0.99254	0.96381	0.98579	0.9837	0.98527

There is a high correlation between the deuterium substitution rate and the theoretical isotopic distribution for histidine containing peptides.

•Human MAPK 14 (p38a) •Bovine serum albumin (as a protective protein)

Incubation (40, 45, 50, 55, 60, 65, 75 °C) 16 hr, 10mM HEPES (pH7.4)/ D₂O

Denaturation reduction, alkylation Tryptic digestion

LC-MS analysis

Byos HDX workflow analysis

Instrumentation:

Nano LC :

ultimate 3000 RSLCnano

(Thermo Fisher Scientific) Column: Monocap C18 Trap Column $(0.075 \times 50 \text{ mm}; \text{GL Sciences Inc.})$ C18 high resolution analytical column $(0.1 \times 1,000 \text{ mm}, \text{GL Sciences Inc.})$ A buffer: 0.1% trifluoroacetic acid/5% dimethyl-sulfoxide (v/v) B buffer: acetonitrile in aqueous 0.1% acetic acid Flow rate: 500 nL/min Linear gradient of 10 to 35% over 60 min

HDX workflow in Protein Metrics Byos[®] Settings: Precursor Mass Tolerance: 15 ppm Fragment mass tolerance 1: 0.5 Da

Mass Spectrometer:

Q-Exactive

(Thermo Fisher Scientific) Scan Range (*m/z*): 400-1,500 Settings: Resolution setting: 35,000 at m/z 200 Sheath gas: 0 In source-CID (V): 0 Normalized AGC Target : 3e6 RF Lens (%): 50 Microscans: 1

Results : Differential interaction of doramapimod with three kinases in HDX

	Inhibition @ 1µM doramapimod	Fig. 3 Only MARK14 through in	teraction with doramanimod showed a			
MAPK 14	97 %	slower conformational change due to thermal denaturation.				
MAPK 13	60 %	Kinase Profiling Inhibitor Database				
Erk 1	3 %					
	YIHSADIIHRDLK	YIHSAGVVHRDLK	YI H SANVL H RDLK			

Parameter settings for His-HDX analysis

20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Doramapimod	1000	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Control	1000	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Doramapimod	006	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Control	006	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Doramapimod	800	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Control	800	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Doramapimod	700	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Control	700	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Doramapimod	600	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Control	600	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Doramapimod	500	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Control	500	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Doramapimod	400	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Control	400	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Doramapimod	0	
20210408_MAPK-T	Reference	D:/M		Trypsin @ R,K C-term	Control	0	
Sample name	Sample type	MS file	'MS sei	Digestion	Condition	ExchangeTime	Replicate
Samples table 🕑							Text filter \$

Fig. 4 Parameter for His-HDX in Byos

In a conventional HDX analysis, the reaction time must be entered in seconds in the Exchange time columns.

For the His-HDX analysis, we entered the alternative values for the incubation temperatures in the Exchange time column.

FPGTDHIDOLK

• •

Results : HDX analysis of thermal denaturated MAPK 14 with doramapimod

Fig. 5 HDX project overview of Byos

(a)Project table: Raw data info (b) Protein coverage of the peptides in a Peptide table (C) The peptide table allows users to filter peptides using the filter function to show only the peptides of interest in the report (d) XIC plot is showing the time range over which the center of m/z analysis was performed (e) Isotope plots: The magenta dotted lines show the center of m/z, and the dots on the peaks show the isotopes used to calculate the center of m/z. (f) MS2 spectrum and mass error plots (g) Uptake plots estimate the percent deuterium uptake of each selected peptide.

(h)	★ ⁵ 2 58/405 rows [∞	Column Filters Editor for "Peptides" View					×	
		Show rows where:					Help Remove all	
		Protein name	<u> </u>	~	MK14_human	\otimes	×	
(h) Histidine-c MAPK14 can	ontaining peptides of be filtered using the	Sequence (unformatted)	⊻ Contains	~	Н	۲	×	

Fig. 6 The deuterated % curves of the peptide at the inhibitor binding site were altered with and without doramapimod

Results : Protein 3D of doramapimod and thermal denatured MAPK14

Fig. 7 The % deuterium curve shifts occurred other than at the inhibitor binding sites

funnel button on the peptide table.

The values of % deuterateion were calculated from the shift of the center of m/z (the pink dashed lines) in the uptake plots, which were the averagine of isotopes with the dots.

MS1 XIC

Conclusions

- Individual histidine residues in the protein have different stability depending on the position of the protein.
- The doramapimod MAPK 14 interaction is likely to have a broad impact on MAPK 14 conformational changes.
- The Byos HDX workflow makes it easy to analyze complex deuterium ratio calculations and visualize the results, helping to reduce analysis time.

References:

• Lodowski et al., Methods Mol Biol, 2015;1271:123-132. Analysis of conformational changes in rhodopsin by histidine hydrogen-deuterium exchange. • Miyagi et al., PLoS One, 2011. Histidine Hydrogen-Deuterium Exchange Mass Spectrometry for Probing the Microenvironment of Histidine Residues in Dihydrofolate Reductase, 6, 2, e17055.

